C D M I

CENTER FOR DISRUPTIVE MUSCULOSKELETAL INNOVATIONS

Lumbar Disc Geometry Affects the Risk for Rod Fracture in Adult Spinal Deformity (ASD) Surgery

PIs: Joseph M. Zavatsky, MD and Vijay K. Goel, PhD Trainee: Ardalan Seyed Vosoughi, BS Spine & Scoliosis Specialists, Tampa, FL 33613 Engineering Center for Orthopedic Research Excellence (E-CORE)

The University of Toledo, Toledo, OH

WWW.NSFCDMI.ORG

Background

MUSCULOSKELETAL

- Risk factors associated with rod fracture In ASD
 - Age
 - Previous spine surgery
 - Insufficient sagittal plane correction
 - Intrinsic
 - Rod material Stainless steel, Titanium and CoCr alloys
 - Diameter (5.5-6.35 mm)
 - Extrinsic
 - Contouring and bending
 - Fatigue strength
 - Notch sensitivity
 - Cyclic loading
 - Repeated metal strain

CDMI

Background

- Superior rod fracture in Lumbar region
 - Lumbar Spine mobility
 - Increased weight-bearing capabilities
- Patients with rod fracture
 - Larger non-fused disc heights
 - Larger diameters
 - Higher volumes adjacent to the PSO or apical lumbar vertebra
- Interbody grafts
 - Provide additional stiffness

MUSCULOSKELETAL

C D M I

Project Aims/ Hypotheses

- Increased stresses result at the PSO site
- Larger discs adjacent to PSO
 - Higher motion in a posteriorly instrumented construct
 - Increased loads / stresses on the instrumentation
- Alternative instrumentation including interbody grafts (IBGs) in larger discs adjacent to PSO
 - Improve stability
 - Decrease rod fracture rates

Methods

MUSCULOSKELETAL

- Modify in house T10-Sacrum Finite Element Model
 - Intact Ligamentous Model INT
 - Simulate 35^o PSO at L3 and stabilized (PSO) with normal disc heights L1 to S1
 - Simulate PSO + IBGs in all discs from L1 to S1
 - Simulate PSO + No IBGs but reduced disc heights (80%, 50% and 20% normal disc height)
 - Simulate PSO + different locations and length of second rod (Dual rod (inward), Dual rod (outward), Dual rod (ouward-long)
- Maximum von Mises Stress in Various Simulation Groups (Flex, Ext, LB and AR with 7.5 N.m moment and Pre-load)

Compare Data for Hypotheses Evaluations

Methods: Pedicle Subtraction Osteotomy

- Wedged shape resection of 35 Degrees at L3
- Posterior arch of L3 removal
- Removal of posterior ligaments (L2/3, L3/4)
- Removal of transverse ligaments (L2/3, L3/4)
- Removal of interspinous and supraspinous ligaments
- Removal of pedicles and transverse processes of L3

Methods: Instrumentation

MUSCULOSKELETAL

• Rod diameter is 5.5mm Cobalt Chrome

Vertebra Level	Screw Diameter (mm)	Screw Length (mm)	Screw Material
T10	4.5	40	Ti-6Al-4v
T11	4.5	40	Ti-6Al-4v
T12	4.5	40	Ti-6Al-4v
L1	5.5	45	Ti-6Al-4v
L2	5.5	45	Ti-6Al-4v
L4	5.5	45	Ti-6Al-4v
L5	6.5	45	Ti-6Al-4v
S1	6.5	55	Ti-6Al-4v
lliac	8.5	80	Ti-6Al-4v

Methods: Disc Degenerated Models

MUSCULOSKELETAL

Farfan index The sum of anterior disc height (A) and posterior disc height (B) is divided by sagittal disc width (C) Disc space height =(A+B)/C 80% Height 20% Height Normal Height Interbody Graft 50% Height

Methods: Dual rod Models

Dual Rods at the PSO region

- Second rod (Lateral): L2 to L4
- Second rod (Lateral Long): L1 to L5

Dual Rod (Lateral)

Dual Rod (Lateral Long)

Methods: Material Properties

- Disc Degenerated Fibers and ligaments
 - Buckled fibers and ligaments
 - Offset non-linear force-deflection curves
- Nucleus Compressibility
 - Young's modulus increased from healthy nucleus to annulus ground substance value
 - 80% and 50% disc height Young's modulus linearly interpolated
- Annulus ground substance
 - Based on Holzapfel et al. Not changed

Nucleus					
Component/Material	Constitutive model	C1	C2	D1	
Nucleus/Normal	Mooney Rivlin	0.12	0.03	0.0005	
Nucleus/80 percent	Mooney Rivlin	0.135	0.03375	0.037875	
Nucleus/50 percent	Mooney Rivlin	0.1575	0.039375	0.0939375	
Nucleus/20 Percent	Mooney Rivlin	0.18	0.045	0.15	
Annulus					
Annulus (Ground)	Neo Hookean	0.348		0.3	

Methods: Material Properties

Component/ Material	Element Formulation	Constitutive Model	Young's Modulus (Mpa)	Poisson's Ratio	Cross-sectional Area (mm2)
	-	Bony S	Structure		-
Vertebral Cortical Bone	Hexahedral	Elastic	12000	0.3	
Vertebral Cancellous Bone	Hexahedral	Elastic	100	0.2	
Posterior Cortical Bone	Hexahedral	Elastic	12000	0.3	
Posterior Cancellous Bone	Hexahedral	Elastic	100	0.2	
Ligaments					
Anterior Longitudinal	Truss	Non-linear Hypoelastic	7.8 (<12%), 20 (>12%)	0.3	74
Posterior Longitudinal	Truss	Non-linear Hypoelastic	10 (<11%), 20 (>11%)	0.3	14.4
Ligamentum Flavum	Truss	Non-linear Hypoelastic	15 (<6.2%), 19.5 (>6.2%)	0.3	40
Intertransverse	Truss	Non-linear Hypoelastic	10 (<18%), 58.7 (>18%)	0.3	1.8
Interspinous	Truss	Non-linear Hypoelastic	10 (<14%), 11.6 (>14%)	0.3	40
Supraspinous	Truss	Non-linear Hypoelastic	8 (<20%), 15 (>20%)	0.3	30
Capsular	Truss	Non-linear Hypoelastic	7.5 (<25%), 32.9 (>25%)	0.3	34

Results: Disc Degeneration Validation

MUSCULOSKELETAL

L1-L2 Disc Range of Motion (10 N.m)

Results: Disc Degeneration Validation

MUSCULOSKELETAL

18 16 14 12 Rotation (Degrees) 10 FLEX/EXT LATERAL BENDING 8 AXIAL ROTATION 6 4 2 0 GRADE 1 GRADE 2 GRADE 3 GRADE 4 NORMAL **80 PERCENT 50 PERCENT** 20 PERCENT In-vitro (Mimura, 1994) FE model (current study)

L4-L5 Disc Range of Motion (10 N.m)

Results: Disc Degeneration Validation

MUSCULOSKELETAL

L5-S1 Disc Range of Motion (10 N.m)

Results: Instrumented PSO Validation

MUSCULOSKELETAL

10 9 8 7 6 ROM (deg) 5 Deviren 2012 Current FE 4 3 2 1 0 FLEX/EXT AXIAL ROTATION LATERAL BENDING

T12-S1 PSO Instrumented ROM (7.5Nm)

Results: Instrumented Models T10-S1 ROM

MUSCULOSKELETAL

INSTRUMENTED T10-S1 GLOBAL RANGE OF MOTION

Results: Maximum von Mises Stress-Location

					S, Mises
	Flexion	Extension	Lateral Bending	Axial Rotation	(Avg: 75%) 339.1 310.8 282.6 254.3 226.0
NORMAL	339/PSO	107/L4-L5	221/PSO	256/PSO	197.8 169.5 141.3 113.0
80 PERCENT	319/PSO	90/L4-L5	212/PSO	238/PSO	84.8 56.5 28.3 0.0
50 PERCENT	266/PSO	81/Adjacent to Iliac Connector	185/PSO	196/PSO	
20 PERCENT	221/PSO	84/Adjacent to Iliac Connector	155/PSO	172/PSO	
INTERBODY GRAFT	133/T11-T12	83/Iliac Connector	125/T10-T11	180/T11-T12	

In PSO:

- The maximum von Mises stress on the rods is happening at the PSO level.
- The flexion motion causes the highest von Mises stress on the rods.
- As the discs degenerate the flexion-extension motions in the instrumented models decrease significantly.
- As the discs degenerate the maximum von Mises stress on the rods decrease.
- Adding Interbody grafts is decreasing the range of motion in all rotations.

- Rod failure may be higher during the flexion motion and as the discs height decrease due to degeneration rod failure rate may decrease.
- Using interbody grafts decrease the von Mises stress on the rods at the PSO region.

Milestones & Timeline

Milestones	
Data analysis, publications and report	August 31, 2017

Acknowledgement

- Dr. Zavatsky, MD
- Dr. Agarwal, MD
- Dr. Goel, PhD
- Industrial Advisory Board

