C D M I

CENTER FOR DISRUPTIVE MUSCULOSKELETAL INNOVATIONS

Development of an innovative posterior pedicle-based screw device for multilevel semi-dynamic stabilization

> PI: Dr. Deniz U. Erbulut Co-PI: Prof. Vijay Goel Co-PI Anand Agarwal, MD Prof. Ali Fahir Ozer, MD UNIVERSITY OF TOLEDO

WWW.NSFCDMI.ORG

Background

NUSCULOSKELETA

Proximal Junction Kyphosis (PJK):

Long thoracolumbar fusion

PJK Anterior VCF

- Abnormal PJK:
 - Proximal Junctional Cobb Angel > Pre-op angle by +10 degrees

Clinical Need and Industrial Relevance

- 10/ appears chartly following curgory
- i. PJK range from 6% to 41%, appears shortly following surgery
- ii. PJK is well known and acknowledged.
- iii. Current prevention techniques
 - a. Vertebroplasty
 - b. Using only hooks
 - c. Soft tissue consideration
 - d. Proper selection of UIV
 - e. Posterior ligament augmentation
 - f. Prophylactic rib fixation
- iv. Further research needed to reduce incidence.
- A new double-headed semi-rigid pedicle screw device might help reduce the incidence.
 Kebaish et al.Spine J. 2013 Dec; 13(12):1897-903
 Watanabe et al. Spine. 2010 Jan 15; 35(2):138-45.
 - Cammarata et al. Spine. 2014 Apr 15; 39(8):E500-7.
 - Smith et al. Spine J. 2015 Oct 1; 15(10):2142-8.
 - Hart et al. Neurosurg Clin N Am. 2013 Apr; 24(2):213-8.
 - Helgeson et al. Spine. 35-(2), pp 177–181
 PROPRIETARY INFORMATION

Double-Headed Screw Concept

MUSCULOSKELETAL

C D M I

PROPRIETARY INFORMATION

Project Aims

• Aim:

Develop a novel double-headed pedicle screw to reduce/prevent PJK and PJF

 Hypothesis: Double-headed screw would decrease PJK/PJF compared to present approaches

Methods

- A. Optimization of double-headed pedicle screw design using a CAD software
- B. Manufacture the prototypes
- C. Evaluate the design using FEA and compare with others on the market
- D. Mechanical testing of the device according to ASTM/ISO standards.
- *E.* In vitro testing of the optimized design

Prototype

Mechanical testing -1

• Flexion/Extension moment - test set-up

Initial Mechanical Tests -1

• Flexion/Extension Moment

Initial Mechanical Testing - 2

• Axial Grip strength

Conclusions

- i. Prototype of the first design draft was manufactured
- ii. Initial mechanical testing was carried for design optimization purposes.
- iii. Only 2Nm torque was applied on the locking cap more than 5 Nm torque damaged the locking cap. Any comments are welcome
- iv. Pedicle screw tested under axial force for grip strength- the max force was around 600N
- v. Pedicle screw tested under static FE bending showed a mean yield bending moment of 800Nmm

Milestones & Timeline

- Finish design optimization and FE analysis Feb 30, 2017
- Finish prototypes and mechanical testing March 2018
- Finish *in vitro* testing June 31 2018
- Finish collecting all data Aug 31 2018
- Data analysis, publications and reports Oct 2018

Thank you